Tautomerization lowers the activation barriers for N-glycosidic bond cleavage of protonated uridine and 2'-deoxyuridine.
نویسندگان
چکیده
The gas-phase conformations of protonated uridine, [Urd+H](+), and its 2'-deoxy form, protonated 2'-deoxyuridine, [dUrd+H](+), have been examined in detail previously by infrared multiple photon dissociation action spectroscopy techniques. Both 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) were found to coexist in the experiments with the 2,4-dihydroxy tautomers dominating the population. In the present study, the kinetic energy dependence of the collision-induced dissociation behavior of [Urd+H](+) and [dUrd+H](+) are examined using a guided ion beam tandem mass spectrometer to probe the mechanisms and energetics for activated dissociation of these protonated nucleosides. The primary dissociation pathways observed involve N-glycosidic bond cleavage leading to competitive elimination of protonated or neutral uracil. The potential energy surfaces (PESs) for these N-glycosidic bond cleavage pathways are mapped out via electronic structure calculations for the mixture of 2,4-dihydroxy tautomers and O4 protonated conformers of [Urd+H](+) and [dUrd+H](+) populated in the experiments. The calculated activation energies (AEs) and heats of reaction (ΔHrxns) for N-glycosidic bond cleavage at both the B3LYP and MP2(full) levels of theory are compared to the measured values. The agreement between experiment and theory indicates that B3LYP provides better estimates of the energetics of the species along the PESs for N-glycosidic bond cleavage than MP2, and that the 2,4-dihydroxy tautomers, which are stabilized by strong hydrogen-bonding interactions, predominantly influence the observed threshold dissociation behavior of [Urd+H](+) and [dUrd+H](+).
منابع مشابه
On the mechanism of the acid-catalyzed hydrolysis of uridine to uracil. Evidence for 6-hydroxy-5,6-dihydrouridine intermediates.
In acidic media, the 5,6-double bond of uridine is rapidly hydrated to give a small amount of 6-hydroxy-5,6-dihydrouridine (Urd-H2O), the mechanism of which is known from studies of the acid-catalyzed dehydration of Urd-H2O (Prior, J. J., Maley, J., and Santi, D. V. (1984) J. Biol. Chem. 258, 2422-2428). In addition to dehydration, Urd-H2O also undergoes direct hydrolysis of the N-glycosidic bo...
متن کاملElectron attachment-induced DNA single-strand breaks at the pyrimidine sites
To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C(3')-O(3'), and C(5')-O(5') σ bond as well as N-glycosidic bond breaking of 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are ...
متن کاملOn the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Evidence for 3' C--H bond cleavage.
The 3' carbon-hydrogen bond of [3'-3H]uridine 5'-triphosphate is is cleaved during its conversion to 2'-deoxyuridine 5'-triphosphate catalyzed by Lactobacillus leichmannii ribonucleoside triphosphate reductase. A selection against 3H of approximately 1.8 is observed on this reduction. During the course of this reaction, no 3H is released to the solvent, and no 3H is recovered in reisolated coen...
متن کاملIsoguanine formation from adenine.
Several possible mechanisms underlying isoguanine formation when OH radical attacks the C(2) position of adenine (A C 2) are investigated theoretically for the first time. Two steps are involved in this process. In the first step, one of two low-lying A C 2⋅⋅⋅OH reactant complexes is formed, leading to C(2)-H(2) bond cleavage. Between the two reactant complexes there is a small isomerization ba...
متن کاملA Facile and Environmental Friendly Method for C=N Bond Cleavage of Imines Using p-Toluenesulfonic Acid in Solid State
A simple, efficient and clean procedure has been developed for the cleavage of imines C=N bond. Deprotection of imines to their parent carbonyl and amine compounds was achieved using p-toluenesulfonic acid in the solid state condition at 25-45 ˚C. The salient features of this methodology are shorter reaction times, cheap processing, high yields of product and easy availability of the catalyst. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 35 شماره
صفحات -
تاریخ انتشار 2016